【题目】某校教职工为庆祝“建国70周年”开展学习强国知识竞赛,本次知识竞赛分为甲、乙、丙三组进行,下面两幅统计图反映了教师参加学习强国知识竞赛的报名情况,请你根据图中的信息回答下列问题:
报名人数分布直方图 报名人数扇形分布图
(1)该校教师报名参加本次学习强国知识竞赛的总人数为 人,并补全频数分布直方图;
(2)该校教师报名参加丙组的人数所占圆心角度数是 ;
(3)根据实际情况,需从甲组抽调部分教师到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名教师到丙组?
【答案】(1) 50,作图见解析;(2)180°;(3)5.
【解析】
(1)根据甲组的人数和所占百分比可求出总人数;
(2)由丙组所占百分比乘以360°即可;
(3)设从甲组抽调x名教师到丙组,根据题意列方程即可.
解:(1)总人数=15÷30%=50(人),乙组人数=50-15-25=10(人),补全频数分布直方图如下:
(2)丙组的人数所占圆心角度数=360°×(1-30%-20%)=180°.
(3)设从甲组抽调x名教师到丙组,
由题意可得:3×(15-x)=25+x,解得x=5,
答:应从甲组抽调5名教师到丙组.
A. 6 B. 8 C. 10 D. 12
【题目】一个边长为 4cm 的等边三角形 ABC 与⊙O 等高, 如图放置,⊙O 与 BC 相切于点 C,⊙O 与 AC 相交于点E,则 CE 的长为 _____cm.
【题目】如图1,Rt△ACB 中,∠C=90°,点D在AC上,∠CBD=∠A,过A、D两点的圆的圆心O在AB上.
(1)利用直尺和圆规在图1中画出⊙O(不写作法,保留作图痕迹,并用黑色水笔把线条描清楚);
(2)判断BD所在直线与(1)中所作的⊙O的位置关系,并证明你的结论;
【题目】将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D落到D’处,折痕为EF.
(1)、求证:△ABE≌△AD’F;
(2)、连接CF,判断四边形AECF是否为平行四边形?请证明你的结论。
(3)、若AE=5,求四边形AECF的周长。
【题目】如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( )
A.4,30° B.2,60° C.1,30° D.3,60°
【题目】定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.
(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°.
①若AB=CD=1,AB∥CD,求对角线BD的长.
②若AC⊥BD,求证:AD=CD;
(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.
【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).
(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;
【题目】如图,△ABC,AB=AC=10,BC=16.
(1)作△ABC的外接圆O(用圆规和直尺作图,不写作法,但要保留作图痕迹)